
NIST SSDF 1.1
How can we help, and how do we align?

Disclaimer
Information in this document is relevant for GitLab Ultimate customers. When
features only apply to the SaaS or Self-Managed environments, this will be
identified.

Introduction
Supply chain security has always been a focal point for organizations across the
globe. How can we ensure that companies outside of our purview have adequate
security? If their security fails, can it have knock-on effects on my organization?

This becomes ever more critical when the supply chain is composed of hundreds
if not thousands of external parties. With a strong third-party risk management
program and sufficient resources, an organization can have a robust supply chain
management practice. The true challenge lies elsewhere: the supply chain, but for
software.

Think about having thousands of suppliers embedded right into your source code,
which means directly in front of your users. This is the state of most organizations
today as open source software is commonly included in today’s applications in
order to speed time to market or to create a competitive advantage.

This is why the White House is committed to help improve American cybersecurity
as well as to secure American supply chains after numerous high profile
cyberattacks had a substantial impact on US infrastructure.

On September 14, 2022, the Office of Management and Budget (OMB) issued
Memorandum M-22-18 recommending that federal agencies vet software they
adopt or procure has been developed in accordance with the NIST SSDF
guidance.

https://about.gitlab.com/handbook/marketing/strategic-marketing/dot-com-vs-self-managed/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains/
https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf


What is the NIST SSDF?
The SSDF, also known as (SP 800-218), was built on best practices gathered from
experts at BSA, OWASP and SAFECode and is intended to help greatly reduce
software security vulnerabilities shipped in production software.

This guidance, currently in version 1.1, will be presented succinctly in this
document. The goal is to work through the four main areas highlighted by the
SSDF and explain how both GitLab the product and GitLab, Inc the company are
committed to securing software for our customers.

A distinctive element of the SSDF is the notional implementation examples. Their
role is to provide practical examples regarding how to meet the requirements of
the guideline. The examples will be leveraged in order to map to GitLab product
features and security controls that GitLab applies internally.

As such, the SSDF is outcome-based. Current controls may be audited against the
SSDF practices to determine where gaps may exist (gap-assessment). The
examples provide relevant guidance for implementation of each practice.

Figure 1: Structure of the SSDF Standard

As visible in Figure 1, the SSDF standard follows a three step process:
● Practices are sections of the SSDF detailing one area of focus
● Tasks divide the different practices into actionable chunks
● Examples demonstrate methods to apply tasks

https://csrc.nist.gov/publications/detail/sp/800-218/final


The SSDF is divided into four key practices that provide a holistic view of software
supply chain security:

Figure 2: Components of the SSDF

GitLab’s Role
As an organization committed to help customers mature in DevSecOps adoption,
we welcome frameworks such as the SSDF, which enable organizations to
benchmark their software security practices against industry standards.

GitLab’s product position is unique as a platform provider tailored to help our
customers towards securing their security supply chain. As a vendor, GitLab is a
central part of customer supply chains and as such, GitLab follows SSDF guidance
internally.



GitLab supports customers on two fronts:
● Ensuring that GitLab as a product gives customers the necessary visibility

over their supply chain and provides the right security toolchain to properly
protect the software factory (GitLab)

● Protecting GitLab, Inc as a company, so that, as a vendor, we can be an
integral part of our customers’ supply chains and uphold the most rigorous
security standards, which includes leveraging our own product’s security
capabilities (GitLab, Inc)

The more an organization complies with SSDF 1.1, the more their supply chain will
be secure as a result of creating a strong baseline across their software
ecosystem.

SSDF Guidelines
The upcoming sections will succinctly walk through the different categories of the
SSDF and describe how GitLab and GitLab, Inc align with these guidelines.

For GitLab, the product, GitLab product features will be highlighted which enable
customers to align to best practice guidance.

For the GitLab, Inc the company, the focus is on how GitLab internally aligns with
the different practices while providing links to additional documentation.



repare the Organization (PO)

Ensure that the organization’s people, processes, and technology are prepared to
perform secure software development at the organization level and, in some
cases, for individual development groups or projects.

GitLab, the product

Features Description SSDF tasks

Merge request
approvals and push

rules

Configure approvals for merge
requests based on specific rules.

PO.3.2, PO.3.3,
PO.4.1, PO.4.2

Security Dashboards
Use Security Dashboards to view
vulnerabilities trends identified by

security scanners.

PO.3.1, PO.3.2,
PO.3.3, PO.4.1,
PO.4.2. PO.5.2

Audit events and
audit reports

Use audit events to track important
events, including who performed a

related action and when. Reports allow
a centralized view over audit events for

evidence gathering.

PO.1.1, PO.3.3,
PO.4.2, PO.5.2

MFA, LDAP and SSO

Proper access control, authentication
and authorization mechanisms to

properly secure access to the source
code repository.

PO.4.2, PO.5.1,
PO.5.2

https://docs.gitlab.com/ee/user/project/merge_requests/approvals/index.html
https://docs.gitlab.com/ee/user/project/merge_requests/approvals/index.html
https://docs.gitlab.com/ee/user/project/repository/push_rules.html
https://docs.gitlab.com/ee/user/project/repository/push_rules.html
https://docs.gitlab.com/ee/user/application_security/security_dashboard/
https://docs.gitlab.com/ee/administration/audit_events.html
https://docs.gitlab.com/ee/administration/audit_reports.html
https://docs.gitlab.com/ee/user/profile/account/two_factor_authentication.html
https://docs.gitlab.com/ee/administration/auth/ldap/
https://docs.gitlab.com/ee/user/group/saml_sso/


Granular roles and
permissions

Role Based Access Control and
granular permissions ensure least

privilege and need-to-know principles
are enforced.

PO.2.1, PO.2.2,
PO.4.2, PO.5.1

Feature spotlight: Merge request approvals

Changes to a project repository typically start with a merge request.

If the default branch is protected, commits must be done through a merge
request. Configuring merge request settings with approval rules ensures that
changes are properly approved prior to merging code or deploying to production.

Within the merge request approval settings, the number of approvals required and
who is allowed to approve merge requests can be specified.

In addition, there are a number of approval settings that further enforce
segregation of duties within change management:

● Prevent approval by author: When enabled, the merge request author
cannot also provide one of the required approvals.

● Prevent approvals by users who add commits: When enabled, users who
have committed to a merge request cannot also approve it.

● Prevent editing approval rules in merge requests: When enabled, users
cannot override the project’s approval rules on merge requests.

● Require user password to approve: When enabled, users must first
authenticate with a password prior to submitting approval.

● Remove all approvals when commits are added to the source branch: When
enabled, this removes all existing approvals on a merge request when more
changes are added to it.

https://docs.gitlab.com/ee/user/permissions.html
https://docs.gitlab.com/ee/user/permissions.html
https://docs.gitlab.com/ee/user/project/merge_requests/approvals/settings.html#prevent-approval-by-author
https://docs.gitlab.com/ee/user/project/merge_requests/approvals/settings.html#prevent-approvals-by-users-who-add-commits
https://docs.gitlab.com/ee/user/project/merge_requests/approvals/settings.html#prevent-editing-approval-rules-in-merge-requests
https://docs.gitlab.com/ee/user/project/merge_requests/approvals/settings.html#require-user-password-to-approve
https://docs.gitlab.com/ee/user/project/merge_requests/approvals/settings.html#remove-all-approvals-when-commits-are-added-to-the-source-branch


GitLab, the company
PO.1: Define Security Requirements for Software Development

● Internally, GitLab developed a list of requirements for securely developing
and deploying software:

○ Security Requirements for Development and Deployment | GitLab

PO.2: Implement Roles and Responsibilities
● Set responsibilities and roles for the application security review:

○ Application Security Review Process | GitLab

PO.3: Implement Supporting Toolchains
● Reduce human effort and improve accuracy of SDLC by leveraging the

native GitLab security scanning capabilities:
○ Secure your application | GitLab

PO.4: Define and Use Criteria for Software Security Checks
● Leveraging the features offered by GitLab

○ GitLab PO Features
● Following a Scaled Agile approach to project management

○ Scaled Agile and GitLab

PO.5: Implement and Maintain Secure Environments for Software
Development

● Enforce SSO and MFA via Okta
Okta | GitLab

● Separation of different infrastructure environments
Infrastructure Environments | GitLab

● Zero Trust Architecture
Security at GitLab

● Encryption at rest for all data stored in the GitLab SaaS infrastructure
Encryption Policy | GitLab

https://about.gitlab.com/handbook/security/planning/security-development-deployment-requirements/
https://about.gitlab.com/handbook/security/security-engineering-and-research/application-security/appsec-reviews.html#roles--responsibilities
https://docs.gitlab.com/ee/user/application_security/
https://about.gitlab.com/solutions/agile-delivery/scaled-agile/
https://about.gitlab.com/handbook/business-technology/okta/
https://about.gitlab.com/handbook/engineering/infrastructure/environments/
https://about.gitlab.com/handbook/security/#zero-trust
https://about.gitlab.com/handbook/security/threat-management/vulnerability-management/encryption-policy.html#encryption-at-rest


Protect the Software (PS)
Protect all components of the software from tampering and unauthorized access.

GitLab, the product

Features Description SSDF tasks

Source Code
Management

Git-based repository with version
control allowing automatic scanning

and built-in CI/CD

PS.1.1

Software Bill of
Materials (SBOM)

An inventory of all constituent
components and software

dependencies involved in the
development and delivery of an

application

PS.2.1, PS.3.2

Commit Signatures

A digital signature providing
non-repudiation and authenticity

regarding who committed code to the
repository.

PS.1.1, PS.3.1

Code Reviews

Ensuring guidelines are followed to
properly review code when assigned.

This is necessary to ensure the
separation of duties is effective.

PS.1.1

https://about.gitlab.com/stages-devops-lifecycle/source-code-management/
https://about.gitlab.com/stages-devops-lifecycle/source-code-management/
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/#cyclonedx-software-bill-of-materials
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/#cyclonedx-software-bill-of-materials
https://docs.gitlab.com/ee/user/project/repository/x509_signed_commits/
https://docs.gitlab.com/ee/development/code_review.html


Feature spotlight: Source Code Management

With Source Code Management, software development work is managed through
a single source of truth. This enables users to centrally review, track and approve
code changes using merge requests. SCM is powered by Git-based repositories
which decentralizes source code management and enables developers to work
locally.

Version control, in addition to continuous feedback loops, ensures iteration is at
the forefront of how code is shipped to production. All of this is powered by
automation which reduces human error and ensures the process is always
followed as it was designed.

Developers can review, comment and improve on each other’s code. This
increases visibility, maximizes productivity and shortens time to production.

Figure 3: GitLab workflow



GitLab, the company
PS.1: Protect All Forms of Code from Unauthorized Access and
Tampering

● All code at GitLab is managed using Source Code Management
GitLab's source code repositories

PS.2: Provide a Mechanism for Verifying Software Release
Integrity

● Hashes for all of GitLab release packages are readily available
gitlab/gitlab-ee - Packages

PS.3: Archive and Protect Each Software Release
● Strong Access Control Program with Least-Privilege

Access Management Policy | GitLab

https://gitlab.com/
https://packages.gitlab.com/gitlab/gitlab-ee
https://about.gitlab.com/handbook/security/access-management-policy.html#principle-of-least-privilege


Produce Well-Secure Software (PW)

Produce well-secured software with minimal security vulnerabilities in its releases.

GitLab, the product

Features Description SSDF tasks

Vulnerability
Report

The Vulnerability Report provides
information about vulnerabilities from
scans of the default branch. It contains
cumulative results of all successful jobs,
regardless of whether the pipeline was

successful.

PW.1.1, PW.7.2

Static Security
Scanning

Using GitLab CI/CD, Static Application
Security Testing (SAST) can be used to

check source code for known
vulnerabilities. The analyzers output

JSON-formatted reports as job artifacts.

PW.5.1, PW.8.1

Dynamic Security
Scanning

DAST examines applications for
vulnerabilities in deployed environments.
An application may become exposed to
new types of attacks once deployed. For

example: misconfigurations of an
application server or incorrect

assumptions about security controls.

PW.5.1, PW.6.1,
PW.8.2

Dependency
Scanning

The Dependency Scanning feature can
automatically find security vulnerabilities

in software dependencies during
development and testing of applications.

PW.4.1, PW.4.4,
PW.6.1

https://docs.gitlab.com/ee/user/application_security/vulnerability_report/
https://docs.gitlab.com/ee/user/application_security/vulnerability_report/
https://docs.gitlab.com/ee/user/application_security/sast/
https://docs.gitlab.com/ee/user/application_security/sast/
https://docs.gitlab.com/ee/user/application_security/dast/
https://docs.gitlab.com/ee/user/application_security/dast/
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/


For example, dependency scanning
identifies when an external (open source)
library is adopted that is known to contain

vulnerabilities.

Compliance
frameworks and

pipelines

Default compliance frameworks can be
enabled for all groups. A default

framework is applied to all the new
projects that are created. Compliance

pipelines can be created to be applied to
specific projects and branches.

PW.1.2, PW.1.3,
PW.6.2, PW.7.1,
PW.8.1, PW.9.2

Feature spotlight: Security Scanning
GitLab has a wide breadth of Security Scanning capabilities adapted to each
stage of the development process. As detailed in Figure 4, the Commit, Build, Test
and Deploy stages Scanners are available to help produce reliable, secure code.

As highlighted in the Get started with GitLab application security page, it is
suggested to update the default branch .gitlab-ci.yml file to ensure scanners are
enabled for all merge requests.

As each team’s needs are different, guidelines are available in the page mentioned
above as well as the documentation entries for all the specific scans.
Commit

● IaC Scanning
● SAST
● Secret Detection
● License Scanning

Build
● Fuzz Testing
● Dependency Scanning
● Container Scanning

Test
● API Security
● DAST

Deploy
● Operational Container Scanning

https://docs.gitlab.com/ee/user/group/compliance_frameworks.html
https://docs.gitlab.com/ee/user/group/compliance_frameworks.html#configure-a-compliance-pipeline
https://docs.gitlab.com/ee/user/application_security/get-started-security.html
https://docs.gitlab.com/ee/user/application_security/iac_scanning/
https://docs.gitlab.com/ee/user/application_security/sast/#static-application-security-testing-sast
https://docs.gitlab.com/ee/user/application_security/secret_detection/#secret-detection
https://docs.gitlab.com/ee/user/compliance/license_compliance/
https://docs.gitlab.com/ee/user/application_security/coverage_fuzzing/#coverage-guided-fuzz-testing
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/#dependency-scanning
https://docs.gitlab.com/ee/user/application_security/container_scanning/#container-scanning
https://docs.gitlab.com/ee/user/application_security/api_fuzzing/
https://docs.gitlab.com/ee/user/application_security/dast/#dynamic-application-security-testing-dast
https://docs.gitlab.com/ee/user/clusters/agent/vulnerabilities.html#operational-container-scanning


Figure 4: GitLab Security Scanning Capabilities

GitLab, the company
PW.1: Design Software to Meet Security Requirements and
Mitigate Security Risks

● Developers collaborate with Application Security to produce Threat Models
to inform of potential risks with new features and relevant mitigations

Threat Modeling | GitLab

PW.2: Review the Software Design to Verify Compliance with
Security Requirements and Risk Information

● The Application Security team reviews and proactively discovers
vulnerabilities in GitLab applications

Application Security Review Process | GitLab

https://about.gitlab.com/handbook/security/threat_modeling/
https://about.gitlab.com/handbook/security/security-engineering/application-security/appsec-reviews.html


PW.4: Reuse Existing, Well-Secured Software When Feasible
Instead of Duplicating Functionality

● GitLab validates any Open Source Software added into its application by
following a detailed security review process

Please review the Securing GitLab’s Supply Chain Technical Paper
available in the Community CAP

PW.5: Create Source Code by Adhering to Secure Coding
Practices

● GitLab developers follow Secure Coding practices and guidelines for
developing and testing and reviewing code securely

Security Requirements for Development and Deployment | GitLab
Code Review Guidelines | GitLab

PW.6: Configure the Compilation, Interpreter, and Build Processes
to Improve Executable Security

● GitLab Runner technology, which are continuously updated (SaaS), is used
within a highly controlled environment and can be deployed via
configuration-as-code

GitLab Runner

PW.7: Review and/or Analyze Human-Readable Code to Identify
Vulnerabilities and Verify Compliance with Security Requirements

● Code reviews and application security analysis are performed on merge
requests in addition to automated security scans

Application Security Review Process | GitLab
Code Review Guidelines | GitLab
Secure your application | GitLab

https://about.gitlab.com/security/cap/
https://about.gitlab.com/handbook/security/planning/security-development-deployment-requirements/
https://about.gitlab.com/handbook/engineering/workflow/code-review/
https://docs.gitlab.com/runner/
https://about.gitlab.com/handbook/security/security-engineering/application-security/appsec-reviews.html
https://about.gitlab.com/handbook/engineering/workflow/code-review/
https://docs.gitlab.com/ee/user/application_security/


PW.8: Test Executable Code to Identify Vulnerabilities and Verify
Compliance with Security Requirements

● Relevant tests such as Fuzz Testing and DAST are automatically performed
on merge requests before deployment to the production environment

Security Scanners per Stage

PW.9: Configure Software to Have Secure Settings by Default
● GitLab has a default baseline for all merge requests written as a compliance

framework and added to the default branch .gitlab-ci.yml file
Compliance frameworks | GitLab

https://docs.gitlab.com/ee/user/group/compliance_frameworks.html


Respond to Vulnerabilities (RV)

Identify residual vulnerabilities in software releases and respond appropriately to
address those vulnerabilities and prevent similar vulnerabilities from occurring in
the future.

GitLab, the product

Features Description SSDF tasks

Vulnerability Page

For all vulnerabilities in a project, the page
contains details of each vulnerability such
as when it was detected, its current status

or linked issues. Users can perform
numerous actions such as: Change the

vulnerability’s status, Create an issue, Link
issues to the vulnerability, Resolve the
vulnerability, or View specific security

training.

RV.1.1, RV.1.3,
RV.2.1, RV.3.1,
RV.3.2, RV.3.3

On-demand DAST
scanning

An on-demand DAST scan runs outside
the DevOps life cycle. Changes in a

repository don’t trigger the scan. It must
be started manually or scheduled to run

(weekly, monthly, etc.)

RV.1.2

Vulnerability
Reporting

This reporting provides information about
vulnerabilities from scans of the default
branch. It contains results of all jobs,

information about the total numbers of

RV.2.2, RV.3.3

https://docs.gitlab.com/ee/user/application_security/vulnerabilities/
https://docs.gitlab.com/ee/user/application_security/dast/proxy-based.html#on-demand-scans
https://docs.gitlab.com/ee/user/application_security/dast/proxy-based.html#on-demand-scans
https://docs.gitlab.com/ee/user/application_security/vulnerability_report/#vulnerability-report
https://docs.gitlab.com/ee/user/application_security/vulnerability_report/#vulnerability-report


vulnerabilities by severity, and details for
each vulnerability identified.

Feature spotlight: Security Training based on Vulnerabilities

Security training helps developers learn how to fix vulnerabilities. Developers can
view security training from selected educational providers, relevant to the
detected vulnerability.

The vulnerability page may include a training link relevant to the detected
vulnerability if security training is enabled. The availability of training depends on
whether the enabled training vendor has content matching the particular
vulnerability.

Training content is requested based on the vulnerability identifiers. Vulnerabilities
with a CWE are most likely to return a training result. This enables developers to
learn from past vulnerabilities to avoid reproducing the same vulnerability in the
future.

Figure 5: Security Training Vulnerability interface



GitLab, the company
RV.1: Identify and Confirm Vulnerabilities on an Ongoing Basis

● GitLab maintains its own vulnerability database and updates its internal
scanners according to newly discovered vulnerabilities

GitLab Advisory Database

● GitLab has a strong Vulnerability Disclosure Process and leverages
HackerOne for its Bug Bounty Program

Responsible Disclosure Policy | GitLab
HackerOne Process | GitLab

RV.2: Assess, Prioritize, and Remediate Vulnerabilities
● GitLab’s vulnerability management program details the process for

assessing, prioritizing and remediating vulnerabilities as well as current
SLAs

Vulnerability Management Overview | GitLab

RV.3: Analyze Vulnerabilities to Identify Their Root Causes
● The GitLab Application Security team performs Root Cause Analysis on

critical vulnerabilities and record lessons learned using Issue Management
Root Cause Analysis for Critical Vulnerabilities | GitLab

https://advisories.gitlab.com/
https://about.gitlab.com/security/disclosure/
https://about.gitlab.com/handbook/security/security-engineering/application-security/runbooks/hackerone-process.html
https://about.gitlab.com/handbook/security/threat-management/vulnerability-management/
https://about.gitlab.com/handbook/security/security-engineering/application-security/appsec-rcas.html


Conclusion
The objective of this Technical Paper was to showcase how GitLab’s capabilities
can help align to the SSDF guidelines. At the same time, as part of your supply
chain, GitLab follows the SSDF Guidance as highlighted in GitLab, the company
sections.

For more information around the security measures implemented at GitLab, please
review the Security Handbook.

For more details around the security features available in the product, please
review the GitLab Documentation.

We are committed to help you on your DevSecOps journey.

https://about.gitlab.com/handbook/security/
https://docs.gitlab.com/ee/user/application_security/#secure-your-application

