

GITLAB, INC.

INDEPENDENT SERVICE AUDITOR’S SOC 3 REPORT

FOR THE

GITLAB.COM SAAS PLATFORM SYSTEM

FOR THE PERIOD OF NOVEMBER 1, 2021, TO OCTOBER 31, 2022

Attestation and Compliance Services

Proprietary & Confidential
Unauthorized use, reproduction, or distribution of this report, in whole or in part, is strictly prohibited.

 1

INDEPENDENT SERVICE AUDITOR’S REPORT

To GitLab, Inc.:

Scope

We have examined GitLab, Inc.’s (“GitLab”) accompanying assertion titled “Assertion of GitLab, Inc. Service
Organization Management” (“assertion”) that the controls within GitLab’s GitLab.com SaaS Platform system
(“system”) were effective throughout the period November 1, 2021, to October 31, 2022, to provide reasonable
assurance that GitLab’s service commitments and system requirements were achieved based on the trust services
criteria relevant to security, availability, and confidentiality (applicable trust services criteria) set forth in TSP section
100, Trust Services Criteria for Security, Availability, Processing Integrity, Confidentiality, and Privacy (AICPA, Trust
Services Criteria).

GitLab uses a subservice organization for cloud hosting services. The description of the boundaries of the system
indicates that complementary subservice organization controls that are suitably designed and operating effectively
are necessary, along with controls at GitLab, to achieve GitLab’s service commitments and system requirements
based on the applicable trust services criteria. The description of the boundaries of the system does not disclose
the actual controls at the subservice organization. Our examination did not include the services provided by the
subservice organization, and we have not evaluated the suitability of the design or operating effectiveness of such
complementary subservice organization controls.

The description of the boundaries of the system indicates that complementary user entity controls that are suitably
designed and operating effectively are necessary, along with controls at GitLab, to achieve GitLab‘s service
commitments and system requirements based on the applicable trust services criteria. Our examination did not
include such complementary user entity controls and we have not evaluated the suitability of the design or operating
effectiveness of such controls.

Service Organization’s Responsibilities

GitLab is responsible for its service commitments and system requirements and for designing, implementing, and
operating effective controls within the system to provide reasonable assurance that GitLab’s service commitments
and system requirements were achieved. GitLab has also provided the accompanying assertion about the
effectiveness of controls within the system. When preparing its assertion, GitLab is responsible for selecting, and
identifying in its assertion, the applicable trust services criteria and for having a reasonable basis for its assertion
by performing an assessment of the effectiveness of the controls within the system.

Service Auditor’s Responsibilities

Our responsibility is to express an opinion, based on our examination, on whether management’s assertion that
controls within the system were effective throughout the period to provide reasonable assurance that the service
organization’s service commitments and systems requirements were achieved based on the applicable trust
services criteria. Our examination was conducted in accordance with attestation standards established by the
American Institute of Certified Public Accountants. Those standards require that we plan and perform our
examination to obtain reasonable assurance about whether management’s assertion is fairly stated, in all material
respects. We believe that the evidence we obtained is sufficient and appropriate to provide a reasonable basis for
our opinion.

Our examination included:

· Obtaining an understanding of the system and the service organization’s service commitments and system
requirements;

· Assessing the risks that controls were not effective to achieve GitLab’s service commitments and system
requirements based on the applicable trust services criteria; and

 2

· Performing procedures to obtain evidence about whether controls within the system were effective to
achieve GitLab’s service commitments and system requirements based on the applicable trust services
criteria.

Our examination also included performing such other procedures as we considered necessary in the circumstances.

Inherent limitations

There are inherent limitations in the effectiveness of any system of internal control, including the possibility of human
error and the circumvention of controls.

Because of their nature, controls may not always operate effectively to provide reasonable assurance that GitLab’s
service commitments and system requirements were achieved based on the applicable trust services criteria. Also,
the projection to the future of any conclusions about the effectiveness of controls is subject to the risk that controls
may become inadequate because of changes in conditions or that the degree of compliance with the policies or
procedures may deteriorate.

Opinion

In our opinion, management’s assertion that the controls within GitLab’s GitLab.com SaaS Platform system were
effective throughout the period November 1, 2021, to October 31, 2022, to provide reasonable assurance that
GitLab’s service commitments and system requirements were achieved based on the applicable trust services
criteria is fairly stated, in all material respects.

Tampa, Florida
November 28, 2022

 3

ASSERTION OF GITLAB SERVICE ORGANIZATION MANAGEMENT

We are responsible for designing, implementing, operating, and maintaining effective controls within GitLab, Inc.’s
(“GitLab”) GitLab.com SaaS Platform system (“system”) throughout the period November 1, 2021, to October 31,
2022, to provide reasonable assurance that GitLab’s service commitments and system requirements relevant to
security, availability, and confidentiality were achieved. Our description of the boundaries of the system is presented
below and identifies the aspects of the system covered by our assertion.

We have performed an evaluation of the effectiveness of the controls within the system throughout the period
November 1, 2021, to October 31, 2022, to provide reasonable assurance that GitLab’s service commitments and
system requirements were achieved based on the security, availability, and confidentiality (applicable trust services
criteria) set forth in TSP section 100, Trust Services Criteria for Security, Availability, Processing Integrity,
Confidentiality, and Privacy (AICPA, Trust Services Criteria). GitLab’s objectives for the system in applying the
applicable trust services criteria are embodied in its service commitments and systems requirements relevant to the
applicable trust services criteria. The principal service commitments and system requirements related to the
applicable trust services criteria are presented below.

There are inherent limitations in any system of internal control, including the possibility of human error and the
circumvention of controls. Because of these inherent limitations, a service organization may achieve reasonable,
but not absolute, assurance that its service commitments and system requirements are achieved.

We assert that the controls within the system were effective throughout the period November 1, 2021, to October
31, 2022, to provide reasonable assurance that GitLab’s service commitments and systems requirements were
achieved based on the applicable trust services criteria.

 4

DESCRIPTION OF THE BOUNDARIES OF THE
GITLAB.COM SAAS PLATFORM SYSTEM

Company Background

Founded in 2011, with over 2,000 team members in more than 60 countries, GitLab, Inc. is an all-remote company
with no central headquarters and no company-owned offices.

GitLab, Inc. is an open core company which develops software for the software development lifecycle used by more
than 100,000 organizations, 30 million estimated registered users, and has an active community of more than 3,000
contributors. GitLab, Inc. openly shares information and is public by default, meaning projects, strategy, direction,
and metrics are discussed openly and can be found within https://about.gitlab.com. GitLab, Inc.’s core values are
Collaboration, Results, Efficiency, Diversity, Inclusion & Belonging, Iteration, and Transparency (CREDIT) and
these form GitLab, Inc. culture.

GitLab, Inc.’s mission is to ensure that everyone can contribute. When everyone can contribute, consumers
become contributors, and the rate of innovation is greatly increased.

Description of Services Provided

The GitLab.com software as a services (SaaS) platform, also referred to as GitLab.com, is a complete open-source
DevOps platform that provides a continuous integration (CI) and continuous deployment (CD) toolchain out-of-the-
box. The GitLab.com SaaS platform is a single application for each stage of the DevOps lifecycle. Enabling product,
development, quality assurance (QA), security, and operations teams to work concurrently on the same project.
The GitLab.com SaaS platform provides teams a single data store, one user interface, and one permission model
across the DevOps lifecycle. This allows teams to collaborate and work on a project from a single conversation,
significantly reducing cycle time and allowing teams to focus exclusively on building great software quickly.

Using the GitLab.com SaaS platform teams can utilize a variety of products including CI/CD, source code
management (SCM), out-of-the-box pipelines (Auto DevOps), security (DevSecOps), agile development, value
stream management and infrastructure automation (GitOps). Each of these popular use cases enable customers
to remove technical barriers and focus on building efficiencies within their digital platforms.

Built on open source, the GitLab.com SaaS platform leverages the community contributions of thousands of
developers and millions of users to continuously deliver new DevOps innovations.

System Boundaries

A system is designed, implemented, and operated to achieve specific business objectives in accordance with
management-specified requirements. The purpose of the system description is to delineate the boundaries of the
system, which includes the services outlined above and the five components described below: infrastructure,
software, people, procedures, and data.

Principal Service Commitments and System Requirements

Principal Service Commitments

GitLab, Inc. designs its processes and procedures related to the GitLab.com SaaS platform to meet its objectives
for its GitLab.com SaaS platform. Those objectives are based on the service commitments that GitLab, Inc. makes
to customers, applicable laws, and regulations, and the financial, operational, and compliance requirements that
GitLab, Inc. has established for the services.

Security, availability, and confidentiality commitments to user entities are documented and communicated in GitLab,
Inc.’s privacy policy and terms of service, as well as in the description of the service offering provided on GitLab,

 5

Inc.’s website. The principal security, availability, and confidentiality commitments are standardized and include
the following:

· Maintain commercially reasonable administrative, technical, and organizational measures that are designed
to protect customer data processed;

· Establish escalation procedures with customers;

· Encryption of data at rest and in transit;

· Encrypt confidential data stored within the database utilizing advanced encryption standard (AES)
encryption;

· Maintain security procedures that are consistent with applicable industry standards;

· Notify customers of new patches applied to production environments;

· Not use confidential information for any purpose other than the purposes related to the customer
agreement;

· Not disclose, make public or authorize any disclosure or publication of confidential information, except as
expressly agreed to in the confidentiality agreement or otherwise in writing by the disclosing party;

· Document and enforce confidentiality agreements with third parties prior to sharing any confidential data;

· Review documentation from third-party providers to help ensure that they are in compliance with security
and confidentiality policies;

· Maintain a business continuity and disaster recovery program;

· Restrict system access to authorized personnel only;

· Regularly assess security programs and processes;

· Identification and remediation of security incidents / events;

· Regularly update systems;

· Maintain the security of the information system from unauthorized access, use, modification, disclosure,
destruction, threats, or hazards;

· Develop, implement, and maintain an information security program designed to protect the security,
integrity, and confidentiality of the system and its information;

· Enable timely, reliable, and continuous access to, and use of, information and systems to support
operations;

· Provide customers with access to technical support engineers for assistance in the proper installation and
use of the software, and help resolve software problems;

· Availability to the SaaS Software will be measured, monitored, and reported on; and

· Maintain reasonable resiliency for data, compute, and network services.

System Requirements

GitLab, Inc.’s operational requirements that support the achievement of service commitments are communicated in
GitLab, Inc.’s policies and procedures and agreements with user entities. GitLab, Inc.’s policies and procedures
define an organization-wide approach to how the system and data is protected. These include policies around how
the service is designed and developed, how the system is operated, how the internal business systems and
networks are managed, and how team members are hired and trained. In addition to these policies, standard
operating procedures have been documented on how to carry out specific manual and automated processes
required in the operation and development of the GitLab.com SaaS platform.

In accordance with GitLab’s assertion, and the description criteria, the aforementioned service commitments and
requirements are those principal service commitments and requirements common to the broad base of users of the
system and may therefore not fully address the specific service commitments and requirements made to all system
users, in each individual case.

 6

Infrastructure and Software

The GitLab.com SaaS platform is based on a multi-tenant, multi-user SaaS architecture built on the Google Cloud
Platform (GCP) and is designed to integrate with multiple DevOps toolchains. GitLab, Inc. does not own or maintain
the hardware located in GCP data centers and operates under a shared security responsibility model. GCP is
responsible for the security of the underlying cloud infrastructure (e.g., physical infrastructure, geographical regions,
availability zones, edge locations), and GitLab, Inc. is responsible for securing the platform deployed in GCP (e.g.,
customer data, applications, identity access management, operating system and network firewall configuration,
network traffic, server-side encryption).

At its core, the GitLab.com SaaS platform is implemented using a combination of Linux, NGINX, Redis, PostgreSQL,
Chef, Terraform, and GitLab.com itself. GitLab, Inc. utilizes GCP firewall rules to allow or deny traffic to and from
their virtual machine instances based on configurations specified by the GitLab.com SaaS platform. GCP firewall
rules are created and managed through Chef. GitLab, Inc. utilizes Cloudflare for web application firewall services
to filter HTTP specific traffic.

Secondary Infrastructure and Supporting Software:

The following secondary infrastructure and supporting software is utilized in support of the delivery of the
GitLab.com SaaS platform:

· NGINX – routes requests to appropriate application architectural components.

· GitLab Workhorse – reverse proxy and handles large hypertext transfer protocol (HTTP) requests.

· GitLab Shell – shell service handles git over secure shell (SSH) sessions.

· Unicorn – routes requests to application components and terminates secure socket layer (SSL).

· Sidekiq – ruby background job processor that pulls jobs from the Redis queue and processes them.
Background jobs allow GitLab to provide a faster request / response cycle by moving work into the
background.

· ops.gitlab.net – repositories for managing GitLab.com infrastructure and operational tasks.
· Gitaly – removes the need for network file system (NFS) for Git storage in distributed deployments of GitLab;

this service handles Git level access in GitLab.

· Kubernetes – container scaling for a subset of the production environment.

· Chef – configuration management solution utilized to provision, configure, and manage production
infrastructure.

· Panther – security event monitoring for the production environment and provides automated alerts.

· Prometheus – monitoring of metrics on individual processes running GitLab.

· Pingdom – uptime monitoring of the production environment.

· Alertmanager – tool by Prometheus that processes alerts sent by client applications.

· PagerDuty – alerting system utilized to deliver alerts to on-call personnel when predefined events occur.

· Tenable.io – cloud-based platform utilized to conduct automated, weekly vulnerability scans of the
production environment.

· Terraform – infrastructure as code to deploy, monitor, and maintain production infrastructure.

· Slack – communications platform utilized to facilitate daily conversations related to various aspects of the
business. Conversations are grouped into project channels, which are organized by topic and/or
department.

· Cloudflare – host of Domain Name Server (DNS) and Web Application Firewall (WAF).

· OSQuery – universal endpoint agent utilized for production server monitoring.

 7

· JAMF – endpoint device management tooling.

· Ansible – IT automation engine supports CI/CD, deploys, maintenance, and database tooling.

People

GitLab, Inc. is an all-remote company with team members located in more than 60 countries around the world. This
geographic diversity allows fault tolerance resistance to disruptions in business continuity.

The following GitLab, Inc. departments are in-scope for this report:

· Executive and management – responsible for the overall operation of the GitLab.com SaaS platform. Direct
and oversee the operation, maintenance, implementation, development, and monitoring of the system.

· Security – responsible for the security of the GitLab.com SaaS platform, including the triaging and
responding to security incidents.

· Infrastructure – responsible for the availability, reliability, performance, and scalability of the GitLab.com
SaaS platform.

· Engineering – responsible for building new features for the GitLab application.

· Business Technology – responsible for creating new processes, workflows, systems, and documentation
for various interdepartmental groups. Responsible for guiding systems, workflows, and processes as well
as being a singular reference point for corporate operational management.

· People Group – responsible for team-member satisfaction, benefits, code of conduct, and the overall hiring
processes and procedures, including onboarding, offboarding, and role changes.

· Security Assurance – responsible for the assessment of the effectiveness of security risk management,
control, and governance processes, and to provide insight and recommendations that can enhance these
processes. Responsible for GitLab, Inc’s operational risk management program, including risk
identification, escalation, and treatment plans.

· Legal – responsible for ensuring that GitLab, Inc. remains in compliance with regulatory requirements,
including requirements related to confidentiality and privacy of customer data.

Procedures

Access, Authentication, and Authorization

Documented information security policies and procedures defining key roles and responsibilities, risk management
governing principles, and design principles to protect systems and data are in place and enforced by GitLab, Inc.

Access to production resources is controlled using permissions associated with GitLab, Inc. staff and strictly
controlled system accounts. Chef is utilized as the infrastructure management and configuration management tool
to help ensure security hardening and baseline configuration standards have been established on production
servers. User accounts are propagated to the production servers, based on role, using Chef. Furthermore, the
Chef client running on production servers are configured to check in with the Chef server every 30-minutes to help
ensure that server configurations are up to date with the latest approved Chef cookbooks and recipes.

In order to access the production environment from the back end, users are required to authenticate into one of the
bastion hosts, which are load-balanced for redundancy, using either two factor authentication or an SSH connection.
Once authenticated to a bastion host, users can initiate an SSH session to the production servers as well as the
production databases.

 8

In order to access the production environment from the front-end via the GCP console, users must authenticate to
the Okta console utilizing their Okta-credentials as well as entering a one-time generated security code or
WebAuthn / FIDO2 biometric.

Administrator access to the production systems is granted based on job roles and responsibilities and limited to
authorized personnel. GitLab, Inc. performs account and access reviews on a quarterly basis to help ensure that
only authorized personnel maintain access to the production environment.

Access Requests and Access Revocation

GitLab, Inc. operates its access management under the principle of least privilege, wherein a team member should
only be granted the minimum necessary access to perform their function. Baseline role-based entitlement access
runbooks and issue templates are utilized for access management. For certain roles, role-based entitlement
templates have been established and are used during the onboarding process. If users require access to systems
that have not been pre-approved, an access request issue is submitted, reviewed by the system owner, and
approved by management before access is granted.

In the event of a termination or a job transfer of an information system user, the people operation management
system sends a notification to relevant personnel, or systems. As a component of the team member termination
process, production system access is revoked for terminated team members as an element of the offboarding task
checklist.

Change Management

GitLab, Inc. utilizes a continuous delivery model for software development and documented policies and procedures
are in place to guide personnel in change control practices. The standard change management process is
documented in a change control workflow. Prior to introducing changes into the production environment, approval
from authorized personnel is required based on the change description, impact of change and test results.
Emergency changes to the production environment follow the same change control workflow as standard changes.
Approvals can be retroactively applied depending on the urgency of the change.

A production issue dashboard is available in the GitLab.com SaaS platform that outlines project details for the
production environment. Issues are categorized based on current state: open, unscheduled, scheduled, etc.

GitLab version control software is utilized to manage production source code and provide roll back capabilities.
GitLab, Inc. systematically prevents users from both developing and implementing code to the production
environment by configuring merge request approval settings on GitLab projects that house source code to require
approval from a peer prior to merging code. Access to modify source code is restricted to authorized personnel.

GitLab’s issue tracking is in place to centrally maintain, manage, and monitor application and infrastructure changes
from development through implementation. Upon initiation of a merge request, the GitLab.com SaaS platform is
configured to require code review and approval from one individual independent of the individual who initiated the
merge request. Various QA / smoke testing and source code security checks, such as dynamic application security
testing (DAST) and static application security testing (SAST), are performed by GitLab’s continuous integration tool
prior to merging the code commits within the merge request. Prior to introducing changes into the production
environment, approval from authorized personnel is required based on the change description, impact of change,
and test results. The aforementioned process is repeated through the staging and canary environments prior to
introducing changes into the production environment. The ability to implement application changes via the
deployment tool is restricted to authorized personnel.

Separate environments exist for development, staging, and production. Development and testing activities are
performed in distinct environments that are logically separate from production to help ensure that changes made
within the development and staging environments do not affect the production environment.

Major software releases are developed using the DevOps Lifecycle (plan, create, verify, package secure, and
release). Each phase is followed prior to introducing changes into the production environment. Release notes are
available and communicated to internal and external system users through the GitLab handbook.

 9

Incident Response

Security incidents are defined as any violation, or threat of violation, of GitLab, Inc. security, acceptable use, or
other relevant policies. Infrastructure incidents are anomalous conditions that result in, or may lead to, service
derogations or outages. These events often require human intervention to avert disruptions or restore service to
operational status.

Documented incident response and management procedures for reporting security events are provided to team
members to guide users in identifying and reporting system failures, incidents, concerns, and other complaints.
The procedures define the types of incidents that need to be managed, tracked, and reported, including:

· Procedures for the identification and management of incidents;

· Procedures for the resolution of confirmed incidents;

· Key incident response systems;

· Incident coordination and communication strategy;

· Contact method for internal and external parties to report incidents;

· Support team contact information;

· Notification to relevant management in the event of a security breach;

· Provisions for updating and communicating the plan;

· Provisions for training of support team;

· Preservation of incident information;

· Timeline of incident;

· Action items;

· Lessons learned; and

· Management review and approval, annually, or when major changes to the organization occur.

Additionally, GitLab, Inc. provides a contact method for external parties on the about.gitlab.com/security site to
submit complaints, inquiries, and incidents.

Confirmed incidents are assigned a priority level and managed to resolution following the incident management
process. If applicable, GitLab, Inc. coordinates the incident response with business contingency activities. Security
personnel complete incident summary issues for confirmed severity 1 security incidents that include the incident
timeline, action items, and lessons learned. Corrective measures or changes that occur as a result of incidents and
identified deficiencies follow the incident management process phases. If a production change is required, the
standard change management process is followed.

The GitLab, Inc. security department leadership conducts a monthly staff meeting to communicate and align on P1
security threats, program performance, and resource prioritization. These meetings are also an opportunity to
discuss mishandled incidents and process improvements.

System Monitoring

Established infrastructure management and configuration management tools are used for security hardening and
baseline configuration standards for production servers. Production systems are monitored for deviations from
baseline configurations in production environments. GitLab, Inc. performs independent third-party penetration
testing for in scope production systems at least annually. Results from the aforementioned are evaluated and
remediated according to risk rating.

In-scope production systems are monitored in accordance with predefined security criteria and alerts are sent to
the Security Incident Response Team (SIRT). Confirmed security incidents are tracked to resolution. Enterprise
monitoring applications are configured to monitor the in-scope systems capacity levels and alert operations
personnel when predefined thresholds have been met. Infrastructure meetings are held on a monthly basis to
review availability trends and forecasts as compared to production system commitments.

 10

Data

Data within the GitLab.com SaaS platform is generated and uploaded by GitLab, Inc. customers who submit
information through the GitLab.com SaaS platform. The transmission of confidential data is secured via an Internet
connection encrypted with transport layer security (TLS) protocol.

Customers have the ability to retrieve reports related to their respective environments through the GitLab.com SaaS
platform. If an error is identified, customers contact customer support and provide feedback to correct and resolve
the issues. Significant events and conditions are captured in the system and application logs.

GitLab.com SaaS platform data is categorized according to the data classification standard and is protected
according to its classification. The policy has four categories:

· Red – restricted and must remain confidential.

· Orange – data subject to laws and regulation that should not be made generally available.

· Yellow – data and information that should not be made publicly available that is created and used in the
normal course of business.

· Green – data that is publicly shareable and does not expose GitLab or its customers to any harm or material
impact.

The following table describes the information used and supported by the system:

Data Used and Supported by the System

Data Description Data Reporting Classification

GitLab customer data Available through the GitLab.com SaaS
platform Non-public data: Red

Metrics for NGINX, Gitaly,
Postgres, Rails-app, Redis,

Registry, and service platform

Publicly available through our public
monitoring dashboards Public data: Green

GitLab corporate data Available through the GitLab.com SaaS
platform

Non-public data: Orange and
Yellow

Public data: Green

Subservice Organizations

The cloud hosting services provided by GCP were not included within the scope of this examination. The following
table presents the applicable Trust Services criteria that are intended to be met by controls at GCP, alone or in
combination with controls at GitLab, and the types of controls expected to be implemented at GCP to meet those
criteria.

Control Activities Expected to be Implemented by GCP Applicable Trust
Services Criteria

GCP is responsible for implementing controls to manage logical access to the
underlying network and virtualization management software for its cloud hosting
services where GitLab systems reside.

CC6.1 – CC6.3,
CC6.6

GCP is responsible for restricting physical access to data center facilities, backup
media, and other system components including firewalls, routers, and servers. CC6.4 – CC6.5

GCP is responsible for ensuring data within GCP is stored in an encrypted at rest
format. CC6.7

 11

Control Activities Expected to be Implemented by GCP Applicable Trust
Services Criteria

GCP is responsible for ensuring access to Cloud Storage server-side encryption keys
is restricted to authorized personnel.

GCP is responsible for implementing controls for the transmission, movement, and
removal of the underlying storage devices for its cloud hosting services.

GCP is responsible for managing logical access to the underlying network,
virtualization management, and storage devices for its cloud hosting services where
the system resides.

CC7.2

GCP is responsible for ensuring capacity demand controls are in place to meet
GitLab’s availability commitments and requirements. A1.1

GCP is responsible for ensuring environmental protection controls are in place to meet
GitLab’s availability commitments and requirements. A1.2

Complementary Controls at User Entities

GitLab’s services are designed with the assumption that certain controls will be implemented by user entities. Such
controls are called complementary user entity controls. It is not feasible for all of the applicable trust services criteria
related to GitLab, Inc.’s services to be solely achieved by GitLab’s control procedures. Accordingly, user entities,
in conjunction with the GitLab.com SaaS platform system and related services, should establish their own internal
controls or procedures to complement those of GitLab, Inc.

The following complementary user entities controls should be implemented by user entities to provide additional
assurance that the applicable trust services criteria described within this report are met. As these items represent
only a part of the control considerations that might be pertinent at the user entities’ locations, user entities’ auditors
should exercise judgment in selecting and reviewing these complementary user entity controls:

Complementary User Entity Control Related Applicable
Trust Criteria

1. User entities are responsible for adherence to their contractual security
and confidentiality commitments. CC1.1, CC2.3

2. User entities are responsible for configuring authentication settings for
end-users for their GitLab.com SaaS platform subscription. CC6.1

3. User entities are responsible for controlling end-user access
management for their GitLab.com SaaS platform subscription.

CC6.1 – CC6.3,
CC6.6

4.
User entities are responsible for understanding and implementing the
GitLab.com SaaS platform security hardening recommendations
according to their internal risk tolerance.

CC6.1 – CC6.2,
CC6.6

5.
User entities are responsible for protecting and controlling access to
tokens and other secrets they create within the GitLab.com SaaS
platform.

CC6.2

6.
User entities are responsible for notification of actual or suspected
information security breaches affecting the GitLab.com SaaS platform to
GitLab, Inc.

CC2.2 – CC2.3,
CC7.3

7.
User entities are responsible for monitoring activity and consuming audit
events within their GitLab SaaS instance to detect potential security
events.

CC7.2

8. User entities are responsible for notification of system failures or upload
failures affecting the GitLab.com SaaS platform to GitLab, Inc. CC7.3 – CC7.4

 12

Trust Services Criteria Not Applicable to the In-Scope System

All criteria within the security, availability, and confidentiality categories are applicable to the GitLab.com SaaS
platform system.

