Veröffentlicht am: 1. Dezember 2025
7 Minuten Lesezeit
Systematische Deployment-Pipeline mit mehrstufigen Rollouts, Canary-Strategie (5% Traffic) und Datenbank-Migrationen für Millionen Entwickler(innen) weltweit.

GitLab führt täglich bis zu 12 Code-Bereitstellungen auf der weltweit größten GitLab-Instanz – GitLab.com – ohne Ausfallzeiten durch. Diese Bereitstellungen nutzen GitLabs eigene CI/CD-Plattform und betreffen Millionen Entwickler(innen) weltweit. Die hohe Bereitstellungsfrequenz dient als primäres Qualitätstor und Belastungstest. Organisationen, die auf GitLab für ihre DevOps-Workflows setzen, nutzen eine auf der eigenen Infrastruktur im Enterprise-Maßstab bewährte Plattform.
In regulierten Branchen wie dem Finanzwesen und der Automobilproduktion sind Zero-Downtime-Bereitstellungen keine Option, sondern Voraussetzung. Die NIS2-Richtlinie fordert in Artikel 21 systematische Risikoanalyse und Business-Continuity-Management – genau das, was GitLab.coms progressive Rollout-Strategie in der Praxis demonstriert. Durch mehrstufige Validierung mit isoliertem Canary-Traffic (5% aller Anfragen) werden potenzielle Probleme erkannt, bevor Millionen Nutzer(innen) betroffen sind.
Für GitLab: Bereitstellungsfrequenz ist geschäftskritisch. Schnelle Deployment-Zyklen ermöglichen Reaktion auf Kundenfeedback innerhalb von Stunden, sofortige Security-Patches und Validierung neuer Features in Production vor Skalierung.
Für Kund(inn)en: Jede Bereitstellung auf GitLab.com validiert die Deployment-Praktiken, die GitLab seinen Nutzer(inne)n empfiehlt. Features werden auf der weltweit größten GitLab-Instanz getestet, bevor sie Kundenumgebungen erreichen. Dies liefert:
Die Deployment-Pipeline durchläuft strukturierte Phasen, wobei jede Phase als Checkpoint auf dem Weg zur Production-Bereitstellung fungiert:
GitLab erstellt sowohl Omnibus-Pakete als auch Cloud Native GitLab (CNG) Images. Omnibus-Pakete werden auf der Gitaly-Flotte bereitgestellt (Git-Storage-Layer), während CNG-Images alle anderen Komponenten als containerisierte Workloads ausführen. Eine geplante Pipeline sucht regelmäßig nach dem jüngsten Commit mit erfolgreicher Pipeline und erstellt daraus einen Auto-Deploy-Branch.
GitLabs QA-Prozess arbeitet Hand in Hand mit der Canary-Strategie durch umgebungsbasierte Validierung. Etwa 5% des gesamten Traffics durchlaufen die Canary-Stage. Dieser Ansatz erhöht die Komplexität von Datenbankmigrationen, gewährleistet aber nahtlose Bereitstellung eines zuverlässigen Produkts.
Progressive Rollout-Phasen:
QA-Validierung erfolgt an mehreren Checkpoints: nach jeder Canary-Bereitstellung und nach Post-Deploy-Migrationen. Weitere Details zur GitLab-Teststrategie finden sich im Handbook.
GitLab.com repräsentiert reale Deployment-Komplexität im Maßstab. Als größte bekannte GitLab-Instanz nutzen Bereitstellungen denselben offiziellen GitLab Helm Chart und dasselbe Linux-Paket wie Kund(inn)en. Mehr zur GitLab.com-Architektur im Handbook.
Dogfooding im Maßstab: GitLab nutzt dieselben Verfahren, die für Zero-Downtime-Upgrades dokumentiert sind. Was bei GitLab nicht reibungslos funktioniert, wird Kund(inn)en nicht empfohlen.
Folgende Stages laufen für alle Environment- und Stage-Upgrades:
Stage-Details:
Während der Bereitstellung existiert eine Zeitspanne, in der das Datenbankschema dem Code voraus ist, den die Main-Stage kennt. Dies geschieht, weil die Canary-Stage bereits neuen Code deployed und reguläre Datenbankmigrationen ausführt, während die Main-Stage noch die vorherige Code-Version ausführt.
Beispiel: Bei Hinzufügen eines neuen merge_readiness-Felds zu Merge Requests laufen manche Server mit Code, der dieses Feld erwartet, während andere nichts davon wissen. Schlechte Handhabung würde GitLab.com für Millionen Nutzer(innen) unterbrechen. Gute Handhabung bleibt unbemerkt.
Mit wenigen Ausnahmen läuft die Mehrheit der Services für eine gewisse Zeit in leicht neuerer Version in Canary. Diese Szenarien sind transiente Zustände, können aber mehrere Stunden oder Tage in Live-Production-Umgebung persistieren. Daher müssen sie mit derselben Sorgfalt wie permanente Zustände behandelt werden.
Datenbankmigrationen stellen eine besondere Herausforderung im Canary-Deployment-Modell dar. Schemaänderungen müssen neue Features unterstützen und gleichzeitig Rollback-Fähigkeit bewahren:
Post-Deploy-Migrationen enthalten oft Änderungen, die nicht einfach rückgängig gemacht werden können – Datentransformationen, Column-Drops oder strukturelle Änderungen, die ältere Code-Versionen unterbrechen würden. Durch Ausführung nach Erlangung von Vertrauen durch mehrere erfolgreiche Bereitstellungen wird sichergestellt:
Dieser Ansatz bietet optimale Balance: schnelle Feature-Bereitstellung durch Canary-Releases bei gleichzeitiger Rollback-Fähigkeit bis Vertrauen in Deployment-Stabilität besteht.
Expand-Migrate-Contract-Pattern: Datenbank-, Frontend- und Anwendungskompatibilitäts-Änderungen folgen einem sorgfältig orchestrierten dreiphasigen Ansatz:
Beispiel für merge_readiness-Column:
Alle Datenbank-Operationen, Application-Code und Frontend-Code unterliegen Guidelines, dokumentiert in der Multi-Version-Compatibility-Dokumentation.
Für GitLab:
Für Kunden:
Die hier beschriebenen Muster – von Expand-Migrate-Contract für Datenbankmigrationen bis zur Multi-Version-Kompatibilität – sind auf kleinere Deployments übertragbar. Nicht jede Organisation benötigt 12 Bereitstellungen täglich, aber die systematische Herangehensweise an Rollback-Fähigkeit und Validierungspunkte gilt unabhängig von der Skalierung.
GitLabs Deployment-Pipeline repräsentiert ein ausgereiftes System, das Deployment-Geschwindigkeit mit operationaler Zuverlässigkeit ausbalanciert. Das progressive Deployment-Modell, umfassende Testing-Integration und robuste Rollback-Fähigkeiten bieten Grundlage für zuverlässige Software-Auslieferung im Maßstab.
Zentrale Überlegungen für Engineering-Teams:
GitLabs Architektur demonstriert, wie moderne CI/CD-Systeme Komplexität großskaliger Bereitstellungen managen und gleichzeitig Geschwindigkeit für wettbewerbsfähige Software-Entwicklung bewahren.
Dieser Artikel beschreibt die Deployment-Patterns und systematische Herangehensweise für GitLab.com. Für vollständige Implementierungsdetails, spezifische Konfigurationsbeispiele und tiefergehende technische Architekturbeschreibungen siehe die englische Originalversion.
Weitere Dokumentation zu Auto-Deploy und Verfahren: